skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitaker, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims.JWST/NIRCam provides rest-frame near-IR photometry of galaxies up toz = 2.5 with exquisite depth and accuracy. This affords us an unprecedented view of the evolution of the UV/optical/near-IR color distribution and its interpretation in terms of the evolving dust attenuation,AV. Methods.We used the value-added data products (photometric redshift, stellar mass, rest-frameU − VandV − Jcolors, andAV) provided by the public DAWN JWST Archive. These data products derive from fitting the spectral energy distributions obtained from multiple NIRCam imaging surveys, augmented with preexisting HST imaging data. Our sample consists of a stellar-mass-complete sample of ≈28 000M >  109 Mgalaxies in the redshift range 0.5 <  z <  2.5. Results.TheV − Jcolor distribution of star-forming galaxies evolves strongly, in particular for high-mass galaxies (M >  3 × 1010 M), which have a pronounced tail of very red galaxies reachingV − J >  2.5 atz >  1.5 that does not exist atz <  1. Such redV − Jcan only be explained by dust attenuation, with typical values forM ≈ 1011 Mgalaxies in the rangeAV ≈ 1.5 − 3.5 atz ≈ 2. This redshift evolution went largely unnoticed before. Today, however, photometric redshift estimates for the reddest (V − J >  2.5), most attenuated galaxies have markedly improved thanks to the new, precise photometry, which is in much better agreement with the 25 available spectroscopic redshifts for such galaxies. The reddest population readily stands out as the independently identified population of galaxies detected at submillimeter wavelengths. Despite the increased attenuation,U − Vcolors across the entire mass range are slightly bluer at higherz. A well-defined and tight color sequence exists at redshifts 0.5 <  z <  2.5 forM >  3 × 1010 Mquiescent galaxies, in bothU − VandV − J, but inV − Jit is bluer rather than redder compared to star-forming galaxies. In conclusion, whereas the rest-frame UV-optical color distribution evolves remarkably little fromz = 0.5 toz = 2.5, the rest-frame optical/near-IR color distribution evolves strongly, primarily due to a very substantial increase with redshift in dust attenuation for massive galaxies. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Recent discoveries of copious amounts of dust in quiescent galaxies (QGs) at high redshifts (z ≳ 1 − 2) challenge the conventional view that these objects have a negligible interstellar medium (ISM) in proportion to their stellar mass. We made use of theSIMBAhydrodynamic cosmological simulation to explore how dust and cold gas evolve in QGs and are linked to the quenching processes affecting them. We applied a novel method for tracking the changes in the ISM dust abundance across the evolutionary history of QGs identified at 0 < z ≲ 2 in both cluster and field environments. The QGs transition from a diversity of quenching pathways, both rapidly and slowly, and they exhibit a wide range of times that elapsed between the quenching event and cold gas removal (from ∼650 Myr to ∼8 Gyr). Contrary to some claims, we find that quenching modes attributed to the feedback from active galactic nuclei (AGNs) do not affect dust and cold gas within the same timescales. Remarkably, QGs may replenish their dust content in the quenched phase primarily due to internal processes and marginally by external factors such as minor mergers. Prolonged grain growth on gas-phase metals appears to be the key mechanism for dust re-formation, which is effective within ∼100 Myr after the quenching event and rapidly increases the dust-to-gas mass ratio in QGs above the standard values (δDGR ≳ 1/100). Consequently, despite heavily depleted cold gas reservoirs, roughly half of QGs maintain little evolution of their ISM dust with stellar age within the first 2 Gyr following the quenching. Overall, we predict that relatively dusty QGs (Mdust/M ≳ 10−3 − 10−4) arise from both fast and slow quenchers, and they are prevalent in quenched systems of intermediate and low stellar masses (9 < log(M/M) < 10.5). This strong prediction poses an immediate quest for observational synergy between, for example, theJames WebbSpace Telescope (JWST) and the Atacama Large Millimetre Array (ALMA). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract The HAWC Observatory collected 6 yr of extensive data, providing an ideal platform for long-term monitoring of blazars in the very high energy (VHE) band, without bias toward specific flux states. HAWC continuously monitors blazar activity at TeV energies, focusing on sources with a redshift ofz≤ 0.3, based on the Third Fermi-LAT Catalog of High-Energy sources. We specifically focused our analysis on Mrk 421 and Mrk 501, as they are the brightest blazars observed by the HAWC Observatory. With a data set of 2143 days, this work significantly extends the monitoring previously published, which was based on 511 days of observation. By utilizing HAWC data for the VHEγ-ray emission in the 300 GeV–100 TeV energy range, in conjunction with Swift-XRT data for the 0.3–10 keV X-ray emission, we aim to explore potential correlations between these two bands. For Mrk 501, we found evidence of a long-term correlation. Additionally, we identified a period in the light curve where the flux was very low for more than 2 yr. On the other hand, our analysis of Mrk 421 measured a strong linear correlation for quasi-simultaneous observations collected by HAWC and Swift-XRT. This result is consistent with a linear dependence and a multiple-zone synchrotron self-Compton model to explain the X-ray andγ-ray emission. Finally, as suggested by previous findings, we confirm a harder-when-brighter behavior in the spectral evolution of the flux properties for Mrk 421. These findings contribute to the understanding of blazar emissions and their underlying mechanisms. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  4. Abstract The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, located on the side of the Sierra Negra volcano in Mexico, has been fully operational since 2015. The HAWC collaboration has recently significantly improved their extensive air shower reconstruction algorithms, which has notably advanced the observatory performance. The energy resolution for primary gamma rays with energies below 1 TeV was improved by including a noise-suppression algorithm. Corrections have also been made to systematic errors in direction fitting related to the detector and shower plane inclinations, O ( 0 1 ) biases in highly inclined showers, and enhancements to the core reconstruction. The angular resolution for gamma rays approaching the HAWC array from large zenith angles (>37°) has improved by a factor of 4 at the highest energies (>70 TeV) as compared to previous reconstructions. The inclusion of a lateral distribution function fit to the extensive air shower footprint on the array to separate gamma-ray primaries from cosmic-ray ones based on the resultingχ2values improved the background rejection performance at all inclinations. At large zenith angles, the improvement in significance is a factor of 4 compared to previous HAWC publications. These enhancements have been verified by observing the Crab Nebula, which is an overhead source for the HAWC Observatory. We show that the sensitivity to Crab-like point sources (E−2.63) with locations overhead to 30° zenith is comparable to or less than 10% of the Crab Nebula’s flux between 2 and 50 TeV. Thanks to these improvements, HAWC can now detect more sources, including the Galactic center. 
    more » « less
  5. Abstract Extended very-high-energy (VHE; 0.1–100 TeV) γ -ray emission has been observed around several middle-aged pulsars and referred to as “TeV halos.” Their formation mechanism remains under debate. It is also unknown whether they are ubiquitous or related to a certain subgroup of pulsars. With 2321 days of observation, the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory detected VHE γ -ray emission at the location of the radio-quiet pulsar PSR J0359+5414 with >6 σ significance. By performing likelihood tests with different spectral and spatial models and comparing the TeV spectrum with multiwavelength observations of nearby sources, we show that this excess is consistent with a TeV halo associated with PSR J0359+5414, though future observation of HAWC and multiwavelength follow-ups are needed to confirm this nature. This new halo candidate is located in a noncrowded region in the outer galaxy. It shares similar properties to the other halos but its pulsar is younger and radio-quiet. Our observation implies that TeV halos could commonly exist around pulsars and their formation does not depend on the configuration of the pulsar magnetosphere. 
    more » « less
  6. Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  7. Abstract In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) Observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between 2015 July and 2020 February with a live time of 4.39 yr. Over this time period, three coincident events with an estimated false-alarm rate of <1 coincidence per year were found. This number is consistent with background expectations. 
    more » « less